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The Challenge: Global Simulation of ITER

X This is extremely large
compared to current
experiments

X We need advanced
computational method,
mathematical model and
high performance computing
to predict its performance

X Very large simulation



Gyrokinetic Simulations: for studying turbulent
transport

• Macroscopic Stability

What limits the pressure in plasmas?

• Wave-particle interactions

How do particles and plasma waves
interact?

• Miroturbulence and Transport

What causes plasma transport?

• Plasma-material Interactions

How can high-temperature plasma
and material surfaces co-exist?



Gyrokinetic Vlasov-Poisson Equation

We consider kinetic ions and adiabatic electrons. The dynamics of
the ions is described by the 5D gyrophase-averaged Vlasov
equation in toroidal geometry.

• gyro-motion: guiding
center drifts +
charged ring

• suppress plasma
oscillation and motion

• larger time step and
grid size
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Particle in cell methods

• In particle methods, we approximate the distribution function by a collection of
finite-size particles
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• At each time step, particles are transported along trajectories described by the
equation of motion
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• the long range forces are usually solved on a grid
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Charge assignment and field interpolation in GKPIC
method
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Gyrokinetic Toroidal Code (GTC, Z.Lin Science 98) for
magnetically confined plasma simulations

• Solve 5D gyrokinetic
Vlasov-Poisson equation
using PIC methods

• 3D toroidal mesh

• Two data structures:
grid-based array and
particle-based array

• Six subroutines

Charge	  

Poisson	  

Smooth	  

Smooth	  Field	  

Push	  

Shi4	  

Δt
ψ



GTC Parallelization

• Written in Fortran 90

• 3 levels of parallelism in original GTC:

∗ 1d domain decomposition in toroidal dimensional
∗ particle decomposition in each toroidal domain
∗ loop-level parallelization with OpenMP

• Massive grid memory footprint: difficulty for simulating large
scale plasmas such as ITER

Problem Size grid size num. of particles in one toro. dom.
A (a/ρ = 125) 32,449 (1M) 3,235,896 (0.3G)
B (a/ρ = 250) 128,893 (4M) 12,943,584 (1.2G)
C (a/ρ = 500) 513,785 (16M) 51,774,336 (4.8G)
D (a/ρ = 1000) 2,051,567 (64M) 207,097,344 (19.2G)

using 100 particle per cell

• Introduce the key additional level of domain decomposition in
the radial dimension-which is essential for efficiently carrying
out ITER size simulations (Adams-Ethier 08), called GTCP

• Use PETSc 2.3.3 for Poisson solver



Porting GTCP from BG/P to BG/Q

• Changed the size of some OpenMP related array from 4 to 64

• Ported PETSc 2.3.3 version to BG/Q system −→ Thanks to
our catalyst Tim Williams

• Complier flags: -O3 -qnohot -qsmp=omp:noauto
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Weak scaling study of A,B,C,D size plasma on Mira and Intrepid

DCBA

Intrepid 4mpi/node, 1thread/core
Mira 16mpi/node, 4threads/core ∗ Q/P performance ratio per

core is 2.02-2.79

∗ Q/P performance ratio per
node is 8.08-11.16



Strong Scaling Study of GTCP on BG/Q
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Achieved only 16%− 35% maximal parallel efficiency (strong
scaling)
• Poisson solver doesn’t scale with the number of threads

• Small number of iteration in the outer level loop in smooth and field subroutine

• Atomic operation in charge subroutine

• Memory copy without multithreading in shift subroutine



Strong Scaling Study of GTCP on BG/Q
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Improve single node performance with multicore and
manycore optimizations(collaborated with Future Tech. Group at LBL)

• The whole code is converted to C

• A structure of array (SOA) data structure for particle array;
aligned memory allocation to facilitate use of SIMD intrinsics

• Loop fusion to increase computational intensity

• Particle binning to improve locality (Kamesh et al SC11)

• A multilevel binning algorithm to improve locality and reduce
data conflict: Binning the gyro-center of the particles
periodically; Binning the four points of the gyro-particles at
every time step (Wang et al SC12 poster)

• Atomic operation is avoided by providing a copy of the local
grid for each thread

• Use a hand-coded iterative solver ⇒ Enable multithreading

• Flat some 2D iteration to 1D



Scaling Study of GTCP-C on BG/Q
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Weak scaling study for A to D size devices on BGQ

GTCP-FORTRAN
GTCP-C

• For weak scaling plot on the right, we use one MPI in a single
node with 64 OpenMP threads.

• Achieved 64%− 73% of maximal parallel efficiency (strong
scaling)

• Obtained 4-5x speed up compared with the original
FORTRAN code



Computer power of GTCP on BG/P and BG/Q
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Particle Scaling Study on BG/P and BG/Q system
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GTC-P FORTRAN on Intrepid
GTC-P FORTRAN on Mira

GTC-P C on Mira
GTC-P C on Mira (fine tuning)

• red → blue: BG/P to BG/Q
• blue → green: multicore optimizations
• green → red purple: compiler flags and processing mapping

BG SMP FAST WAKEUP = YES : OMP WAIT POLICY = active;
RUNJOB MAPPING

• The “time to solution” is 50x compared with using GTCP FORTRAN code on
BG/P with the same number of nodes



Study ITG driven turbulence spreading with the
ultrafast GTCP-C code
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• 2x longer, 7.5x more number of particles than the previous run

• Now we can simulate ITER size plasma with 300 ppc (total 40 billion particles)
for 30k time steps < 4 hours by using 2/3 of Mira



Conclusion

• Full application multicore and manycore optimizations

• Introduce radial domain decomposition

• Excellent scaling on BG/Q up to 524,288 cores

• Simulate ITER size plasma with 300 ppc (total 40 billion
particles) for 30k time steps < 4 hours by using 2/3 of Mira

• 50x “time to solution” speed up compared with GTCP
FORTRAN on BG/P system



Current and future work

• Study turbulence spreading and size scaling up to ITER size
with high resolution simulations

• Study phase space remapping for long time simulations with
gyrokinetic δf particle in cell method

• Develop full-f capability the code



Thank you!
Questions?
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